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A new iterative algorithm is presented to solve for an n by 1

solution vector w, if one exists, to a set of linear inequalities,

A w > 0 which arises in pattern recognition and switching theory. The

algorithm is an extension of the Ho-Kashyap algorithm, utilizing the

gradient descent procedure to minimize a criterion function for a

solution of the linear inequalities. The criterion function to be
2

1
minimized is J(x) = 4 I (cosh 7- yi) where 3r= A w - b and b is a

1)=1

vector with all positive elements. This criterion function has a

larger gradient than previously used criterion functions. The algorithm

is expressed below:

w(0) = A b(0), b(0) > 0

z(k) = A w(k) - b(k)

b(k+1) = b(k) + p(k) h(k)

h(k) = (hi(k)] [sinh yi(k) + Isinh yi(k)I]

wtk+1) = w(k) + p(k) A#h(k)
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where k is the iteration step and A
# is the generalized inverse of the

N by n pattern matrix A. p(k) can be expressed as p(k) = 1/cosh ymax(k)

with y
max

(k) = Max ly (k)1 or as p(k) = Num./Den. where

i

Num. = [I(k) + LE(k)1] R(k) [z(k) + 12.(k)1] and

Den. = 21x(k) + 1,y(k)1] R(k)(1 - A AfiR(k)Wk) IY.(k)1]

where R is a diagonal matrix [rii] with rii = sinh yi/yi. The algorithm

also simultaneously tests for the nonexistence of a solution of the linear

inequalities whenever all yi are nonpositive with at least one yi negative.

This algorithm applies to two-category classification problems.

The algorithm has a faster rate of convergence than Ho-Kashyap

algorithm for a certain range of the initial value of b, b(0). A comparison

has been made between the improved algorithm with p(k) = Num./Den. given

above and the Ho-Kashyap algorithm with pg. The convergence rate is

greatly increased for 0.001 < bi(0) < 0.5 (i=1,2,...,N) as verified by

computer results of sample problems in switching theory and pattern

recognition. For problems where a large number of iterations, for example,

greater than twenty, were required for the Ho-Kashyap algorithm, the

proposed algorithm reduced the number of iterations by a factor of 20 to

450. The total computing time was approximately reduced by a factor of

three and in one case by 380 with the proposed algorithm. For problems where

a mall number of iterations were required by the Ho-Kashyap algorithm,
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for example, less than twenty, the proposed algorithm reduced the number

of iterations by as much as 30 percent.

The generalization of the proposed algorithm applicable to multi-

class pattern classification problems has been presented and a convergence

proof has been given. The algorithm solves for an n by R-1 solution matrix

U of a set of linear inequalities Ail! (tied > 9 (for all iJ and

j=1,2,... ,R), where the el.'s and the R vertex vectors of a (R-1) dimen-

sional equilateral simplex. This generalized algorithm is given in the

following equations:

U(0) = A#B(0)

Y(k) A U(k) - B(k), Z(k) Xj(k) Ej

B(k+1) = B(k) + p(k) H[Y(k)]

H [Y(k)J [S (Z(k) + A (k)JE -1

u(k+1) U(k) + p(k) A
it

HrY(k)]

where again k is the iteration step,

and

S (Z(k) a [ s (z(0), [sinh Z
jq

(k)j,

A

Jci

A
A
jq

(k) S
jq

[Z(k)) Sgn (
t
Z
jq
(k))



p(k) is expressed as

where

and

iv

n4

R

p(k) / Z (fle,(k) + H (Y(k))(E
t
)
-1
R
-1

( (k))E H (Y(k))

j=1 L=1 4"

L-J -j k-j

R-1
2 1 h (I - A A )h

q=1 -1 -1

Lci(k) A [J7j(k).11(11,1j(k)) +
kAj

(k))(E
I
tE ) 1R-1( Z (k)R( k

Z (k)) - A (k))t
-I -i rt-J

A
R( Z (k)) = a diagonal matrix [r

ii
(
1
Z (k))]

L-j -j

Sinh Z
A L-iq

Y ( Z (k)) = , (i=1,2,...,R-1).
L-j Zjq

The proof of convergence of this multiclass algorithm utilizes the concept

of mapping the pattern classes into vertices of the equilateral simplex.
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I. INTRODUCTION

A. General Background

A great amount of research for the solution of linear

inequalities has been undertaken in the past ten years. One of the

reasons for this research is the development of linear separation

approaches to pattern recognition
(1-5,12-19)*

and threshold logic

problems.
(6-11)

Both of these problems require the determination of

a decision function or decision functions which, in the case of

linear separation, involve a system of linear inequalities.

1. Pattern Recognition

The problem of pattern recognition requires fhe consideration

of three fundamental aspects: namely, Characterization, abstraction,

and generalization.
(13)

The characterization aspect is concerned

with the measurement selection and feature extraction. From the

measured patterns or raw data, a set of independent variables are

selected to describe the patterns under consideration. These

independent variables are known as primary attributes or measurements,

and are denoted by ul,u2,...ud. These attributes can be further

processed to give a set of independent variables x x
2'

x
r

where

x (u ...0
d
) i=l,2,...r,

*Parenthetical references placed superior to the line of text refet

to the bibliography.

IrammumlawIlMaimulnlIM1111111111mobra..
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which adequately dharacterize fhe original patterns for the purpose

of classification. The vector x formed by fhe components xl,...x
r

is called the pattern vector. The abstraction aspect is the

determination of the decision functions or discriminant functions

so as to separate the given sample patterns according to their

respective classes. This aspect is also called the training aspect.

For a R-category pattern classification problem, a set of R discriminant

functions, g.(x), j =1,2,...R, are to be determined from N sample

J

patterns of known classification such that gj(x)>*gi(x) for all ivij

if the pattern x is of class C. asFor a two-category clsification

or dichotomization problem, a single discriminant function,

g(x) g
1
(x) -

2

may be used so that it separates all the sample pattern vectors

into two classes. Thus the function, g(x), must satisfy the following

two inequalities:

g(x)).-0 for all sample patterns belonging to the class Cl,

g(x).<0 for all sample patterns belonging to the class C2.

The ability of the determined discriminant functions to recognize

correctly the class of new sample patterns is considered the

generalization aspect which assesses the error rate after training.
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2. SwitChing Problems

The switching problems referred to here are a special class

of pattern classification problems in which the primary attributes

are the r independent switching variables of the problem,

xl9x2,...xr. Each of these variables can assume only one of

two values which can be represented by either 0 and 1

Or and 1. The pattern vectors, x's, are the vertices of a

r-cube, which are 2r in mmmber. Every vertex of the hypercube may

belong to either one of the two classes or remain unspecified with

regard to its class. A Boolean function g(x), known as a switching

function is associated with every switching problem. It is a

decision function to separate the vertices into two classes. Such

a decision function can be realized by a threshold logic circuit.

Thus the switChing prdblem is essentially an abstraction problem

and the techniques of linear inequalities have been applied to such

switching problems.
(6,10,11)

B. Ho-Kashyap Algorithm

The deterministic abstraction problem for two-category

classification, as mentioned above is to determine a decision

function, g(x), of the pattern vector x such that
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g(x))o 0 if x belongs to class C1

g(x)4:0 if x belongs to class C2

for all of the N sample pattern vectors. For the linear separation

of the pattern vectors x's, g(x) is a linear decision function

represented by

g(x) w 1+ w 2x1 r+lxr

where the weight components wi ,w2,,mr.4.1 are to be determined. For

notational simplicity, let x be now redefined asan n by 1 augmented

pattern vector whose first component is unity and the remaining

(n-1) components are the pattern components xl,x2,.xr mentioned

previously, where n=r+1. The transpose of x is

x
t

(1,x x
2
,...x

r
).

Let the transpose of the n by 1 weight vector be

w t
Ow

1
,w

2'
...w

n
).

The discriminant function for the dichotomization problem is

g(x) xtw.

(1.2)

(1.3)

Among the N sample or training patterns, let nl of them belong to

class C1 and n2 of them to class C2, where n1+n2 l N. They are

designated respectively by ixl, (i = 1,2,...n1), and 142,
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(i 1,2,...n2), where the subscript on the right denotes the

pattern class and the subscript on the left denotes the ith pattern

in that class. Then the problem is to determine a weight vector

w such that

xt1 w>0
1

for i = 1,...n1,

and (1.4)

xti w<0
2

for i = 1,...n2.

Ho and Kashyap have developed an iterative algorithm to solve

for w, which is considered one of the best available a1gorithms.
(12)

Let A be the N by n matrix of sample patterns defined below:

A

gismo ma,

t

1,x--1.

t

211

.

.

t
-22E2

t
- x
n
2
-2

(1.5)



Inequality (1.4) then becomes inequality (1.6):

Aw>0. (1.6)

Let b be am by 1 vector with all positive components and ;E be the

N by 1 vector defined by

3rilm Aw - b. (1.7)

The Ho-gashyap iterative algorithm for a solution of w is given by

w(0) Al/b(0), b(0)). 0 but otherwise arbitary

2(k) Aw(k) b(k)

(1.8)

w(k+1) w(k) + pAft[x(k) +120)1], 0 dcps 1

b(k+1) b(k) + p[Z(k) + I Zat)I

0

wherek denotes the iteration number and A is the generalized inverse

of A.
(20) The algorithm is exponentially convergent and a solution

of w can be obtained in a finite number of iterations when all of

the components of .7.(k) become positive or zero, provided that the

given sample patterns are linearly separable.

The Ho-Kashyap algorithm was developed from the view point

of minimizing a criterion function J so HAW b 112 1m 111.112. The

derivation consists of the following two steps: (1) for a fixed

1000, determine a w to be a least square fit to Aw - b 0, and

(2) for a fixed w, allow b to change in the direction of steepest
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descent of J, subject to the constraint b>0. This algorithm has

a high convergence rate for a number of pattern recognition problems.

It also provides a test for nonlinear separability of the sample

patterns. If the given sample patterns are not linearly separable,

that is, the system Aw>0 is inconsistent, this is indicated at

a certain step:k in the iteration by x(k).1:0 which is defined as

all components of z(k ) are negative or zero but with at least one

non-zero component.

The generalization of the Ho-Kashyap algorithm to multi-

class pattern classification has been attempted by Blaydon
(15)

and

Fu and Wee
(16)

and Li, et el .
23) Experimental results have arso(

been reported.

C. Objectives of the Dissertation

As ascertained by Devyaterikov, Propoi, and Tsypkin(18),

a general recursive formula can be obtained for the system of

inequalities (1.6) by minimizing a suitably chosen convex criterion

function J(2). In addition to the original Ho-Kashyap algorithm

2
which uses 3(2) = yi, other well known non-parametric learning

441
algorithms may also be interpreted as obtained from minimizing

different criterion functions J(x), for example, J = Iz - z for

perceptron's training algorithm, and J stazI- 4 for the relaxation

type training algorithm. Thus the solution of a system of linear

inequalities can be made equivalent to a minimization problem.
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With this concept as the motivation, it has been attempted

to Choose another criterion function J having steeper gradient than

Ho-Kashyap's with a hope to further accelerate the convergence of

the algorithm. Thus, the main objectives of this dissertation are:

(1) to develop an improved iterative algorithm for the two-category

classification problem with the choice of

J(2) go47 (Cosh 1/2 yi)
2

,

4g,

and (2) to generalize this algorithm for multiclass pattern classi-

fication. The convergence proofs are given in Chapter II and

Chapter V respectively. The improvement on the convergent rate has

been demonstrated by a number of computer experiments on switching

problems and pattern recognition problems. These experimental

results are presented in Chapters III and IV.
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II. AN ACCELERATED ALGORITHM OF LINEAR

INEQUALITIES FOR DICHOTOMIZATION

A. Development of the Algorithm

In this chapter, an accelerated iterative algorithm will be

developed for the solution of the set of linear inequalities (1.6)

which is rewritten in the following equation:

A w > 0 . (2.1)

This algorithm is an improvement of the Ho-Kashyap algorithm by choosing

a criterion function

2
1 %

j(E) = 4 I (cosh ye
i=1

to be minimized where yi is the ith component of the N by 1 vector

defined in equation (1.7), that is)

(2.2)

zszAw.-b, b>0 (2.3)

The improvement lies in an acceleration of the Ho-Kashyap algorithm caused

by a steeper gradient of J(2) as can be seen when a comparison is made

between the two criterion functions. Let Jhk(Y) designate the criterion
function used in the Ho-Kashyap algorithm,

.1.1 ndi...



J
hk

2 N 2
(Y) - I ty-I I - / Yi

i=1

Since J(Y) and J
hk

(x) reach their respective minimal when each

and each yi
2

are respectively minimized, one can simply compare

and

the convex functions of one variable only, where

1 N 2j(yi) = 4(cosh I ye

J
hk

(y
i
) me Yi

2

10

(2.4)

1 2
(cosh I yi)

J(y) and

(2.5)

(2.6)

These two functions are illustrated in Figure 1. Taking the gradients of

gyi) and J(y) with respect to yi, one obtains

and

agyi) 1 1
= 4 (cosh y ) (sinh y ) = 2 sinh y

iayi 2 i 2 i

2 3 2 5

3.7hk(yi)

so 2yi

gi

(2.7)

(2.8)

aJ(y,)

It is clear that the absolute value of ' is greater than the absolute
aYi

kJ
hk

(y
i
)

value of everywhere except at yi = 0 where they are equal. In

ayi



_

2
1

,gy
i
) - 4 (cosh yi.)

3(y1)

- 24

- 22

20

- 18

16

14

. 12

-a' 10

- 8

- 6

11

2
Jhk (Yi)n?i

-3 -2 -1 0 1 2

Figure 1. Comparison of Criterion Functions J(yi) and Jhk(yi).

3

Yi
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DJ(y) 3J
hk

(y)

general, the gradient is greater than the gradient ------ everywhere
Dy ai.

except at the origin y. = 0. Since the gradient descent procedure is used

in both algorithms, and since y. and b, or y and w, are linearly related,

it ierconceivable that'the proposed algorithm may have a higher convergence

rate for a solution w.

As mentioned before, J(y) reaches a minimum when each term

1 1
(cosh lyi)

2
, (i=1, ,N), is minimized. For each (cosh yi)

2
to be a

minimum, each yi, (i=1, ,N), must equal zero and y. = 0 gives a desired

solution. Thus one is attempting to cluster the values [ix1 ]wand--
-[jx2] w, (i=1,2,...,n10=1,2,...,n2) about the positive scalers bi's,

(i-1,2,...,N). Since the bi's are only constrained to be positive, J(y)

can be minimized with respect to both w and b subject to the condition

that b 0. Note that it is not necessary to attain the minimum value

of 3(1); in fact, a solution w is obtained whenever y > 0 with b > 0

from which follows A w > b > 0.
IIIMMEN IMMO .11M0.1.

Let the matrix A defined in (1.5) be also represented as

From (2.3),

A

a
11

a
12

a
ln

a a a
21 22 2n

aN2
a
N1

a
Nn

=me,

y =a w1 +a
i2

w2
*+

+ a
in

wn bi
i **

(i=1,2,...,N)

(2.9)

(2.10)
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and

"i
.

= a
9w ij

ayi

ab
= aij

where is th,1 kronecker delta. Let
ij

J (y) = 4(cosh- y )
2

, (1=1,2,...,N)
2 i

then

J(Y) = Ji(Y)
i=1

Thegradientsof.yDwithrespecttowjandb.are respectively

aJ,(Y)
1 aY4= 4 (cosht yi)(sinh yi

ay
i= 2 (sinh y )

aw.
2 a sinh y

and

ay

ab
) = -26 sinh y

ij
= 2 (sinh y

Now,

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)



a =lb

where the derivative of a scalar with resnect to a column vector is a

column vector. Hence,the gradient of J(y) with respect to w is given by

My) N 3Ji(y)

3w
ill. ali

= 2 sinh yl

IIM

a
11

a
12

.

.

a
ln

+ 2 sinh y2

INNIP

a
21

a
22

.

.

a
2n

IOW

a
NI

+ ... + 2 sinh yN a
N2

JR= 41. IIIIMI

= 2

11
a
21

... aN

a
ln

a
2n

... a
Nn

sinh y
N

sinh yl
.

.

= 2At

sinh yl

sinh y2

sinh yN

011.

4111111111

OWN.'

111

;
(2.19)

a
Nn

Ml



and the gradient of J(2) with respect to b is given by

N
= 1 ' = - 21

i=1 311

,I1.

sinh yl

sinh y2

sinh y
N

= - 2

'MI.

sinh yi

sinh y2

sinh yN

IMMO OGI

Since w is not constrained in

...

any way,

..

u(2)
- 0 implies

Dw

sinh yi 0

sinh y2 0

[

111%

.
sinh ym 0

le .01.1,

15

. (2.20)

which, in turn, implies yi = 0 for all i=1,2,...,N. Therefore, for a

fixed b > 0, minimizing J(2) with respect to w gives

Solving the above equation for w, one obtains

w = Ailb (2.21)

where A
#

is the generalized inverse of A
(20)

.

DJ(y)

On the other hand, for a fixed w, -----=
3b

0 with b > 0 dictates-
a descent procedure of the following form, with k denoting the iteration

number:
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b(k + 1) = b(k) + Ab(k) (2.22)

where the components of Abi(k), of pb(k) are governed by

aJ(y(k))

-( )ism 2 sinh yi

Ab (k)co(

.dasb

if yi < 0 .

(2.23)

Introduce a positive scalar p(k) as the proportionality constant and

rewrite equation (2.23) in the vector form,

where

sinh yl(k) + Isinh y1(k)1

sinh y2(k) + Isinh y2(k)1

Ab(k) = p(k)

sinh yN
(k) lainh y

N
(k)1

OM%

p(k) h(k) (2.24)

h(k) =

sinh 571(k) + Isinh y1(k)1

sinh y2(k) + lsinh y2(k)1

sinh y (k) + Isinh y
N
(k)1

As can be shown later, p(k) may be chosen as equal to

(2.25)

1
p(k) = (2.26)

cosh y
max

(k)
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where

y
max

(k) = Max ly
i
(k)1

Substituting (2.24) into (2.22) and, from (2.21), writing

w(k + 1) = A#b(k + 1) = A [b(k) + Ab(k)]

(2.27)

= w(k) + p(k) A# h(k) ,
(2.28)

one obtains the following algorithm:

1

w(0) = A#b(0), b(0):> 0 but otherwise arbitrary

A w(k) - b(k)

b(k+1) = b(k) + p(k) h(k)

w(k+1) = w(k) + p(k)A#h(k)

(2.29)

where h(k) and p(k) are given by equations (2.25) and (2.26) respectively.

Note that in this algorithm p(k) varies at each step and is a nonlinear

function of z(k). A recursive relation in y(k) can also be obtained from

(2.29).

x(k+1) = A w(k+1) - b(k+1) = A A#b(k+1) b(k+1)

* A A
# [b(k) + p(k)h(k)] - b(k) - p(k)h(k)

= A w(k) - b(k) + (A A# - I)p(k)h(k)

Y(k+1) .20) + p(k) (A A# - I) h(k) .

4

%VW

(2.30)
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Just like the Ho:.'Kashyap algorithm, it can be shown that the

above algorithm (2.29) converges to a solution w of the system of

linear inequalities in a fitite number of steps provided that a solution

exists, and simultaneously acts as a test for the inconsistency of the

linear inequalities. These properties are formally stated in a theorem

as given in the next section.

B. Theorem 1

Before discussing the main theorem, a lemma to be used in the

proof of the theorem will be given first.

Lemma ilLet one consider the set of linear inequalities (2.1) and the

algorithm (2.29) to solve this set. Then

1) y(k) jo for any k;

and

2) if the set of linear inequalities is consistent, then

y(k) 0 for any k.

This lemma is the same as the one given by Ho and Kashyap
(12)

except that

the iterative algorithm is different. The proof of the lemma is not iiven

here since it is identical to the proof of Ho-Kashyap lemma. Recall again

the notation used in the lemma: y(k) < 0 means that yi(k) < 0 for all i

but z possesses at least one negative component. This lemma is a rigorous

statement that with a consistent set of linear inequalities A w > 0, the

elements of the vector 2:(k) cannot be all non-positive.

.
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Theorem 1: Consider the set of linear inequalities (2.1) and the

algorithm (2.29) to solve these inequalities, and let

V[z(k)] = Ilz(k)112.

1) If the set of linear inequalities is consistent then

a) AV[z(k)] V[z(k+1)]- V[z(k)] < 0 and lim V[z(k)] = 0
k400

implying convergence to a solution in an infinite number

of steps; and

b) actually, a solution is obtained in a finite number of

steps.

2) If the set of linear inequalities is inconsistent, then

there exist a positive integer k such that

and

tiVEE(k)] < 0 for k < k*

AV[z(k)] = 0 for k > k*, and

z(k) jOfor k < k*

z(k) = z(k*) < 0 for k > k*

w(k) = w(k )

b(k) = b(k )

for k > k

for k > k

In other words, the occurrence of a nonpositive vector z(k)

at any step terminates the algorithm and indicates the incon-

sistency of the given set of linear inequalities.

-
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Proof:

Part 1: Since the algorithm (2.29) can be rewritten as a recursive relation

in "(c) given by (2.30), and

V[x(k)] = Ilx(k)112 > 0 for all m(k) 0 0. (2.31)

VEx(k)] can be considered as a Liapunov function for the nonlinear differ-

ence equation (2.30). Thus

A q(k)1 al! qx(k+1)] - V[y(k)]

= 11 I(k+1) 112 11.7.(k)112 (1r+1) x(k+1) - xtr,k) z(k)

' U.(k) + p(k)(A A) - I)h(k)]tEx(k) + p(k)(A A° - I)h(k)]

- !! (k) ..(k)

= p(k)ht(k) (A A# - I)t x(k) + p(k) yt(k) (A A# - I) h(k)

+ p
2
(k) h

t
(k) (A A

#
- I)

t
(A A

#
- I) h (k).

Since (A A - I) is hermitian idempotent
(20)

,

then,

(A A
#

- I)
t = (A A

#
- I),

(AA =I)
t (AA

#-I)= (AA -I)(AAll-I)=AA#AA#-AA #-AA +I_
-AA!' -AA# -AA# +I=I-AA.

qx(k)] = 2 p(k) h
t
(k) (A A

#
- q(k) + p

2
(k)h.

t
(k)(I - A A

#
)h(k).



Now

hence

Let

# #

A A z(k) EN A A
#
[A w(k) - b(k)] - A A

#
[A A b(k) - b(k)]

a, [A AitA Alt - A Aft]b(k) = [A A
#

- A A
#]b(k)

' 2.1

AV[z(k)] reduces to

6V[z(k)] - -2 p(k)ht(k) y(k)
p2(.k)h t

(k) (I - A
..

III

MIND

sinh y1

sinh y2

sinh yN

mDsinh 5,1

yl

0

MI

MI6

sinh y1

Y2
YI

sinh y

2 Y2

Binh yN

VINO

0 0

sinh y2
...

Y2

0

NED 11001.

Y
1

Y
2

YN

AMID MIND

21

(2.32)

is R(y) z (2.33)



where

sinh yl

yl
sinh y2

A 0 0
Y2R(y) =

= diag (r r
22'

r
NN

)

22

41mb

sinh y
Note that r = > 0 for all ye 11(2) > 0 and R

t
(2)yi

Then s(2) has the following properties

sit(y) .xtRt(x) ZED,

l.!.(2:) I - 111(z)z.1 It(x)

s(x) I t I st (2) I 1 t R.i(z)

From (2.25) and (2.35), the properties of h(2) are:

(2.34)

(2.35)

h(2) = 8(2) + 1E1(01' R(2)Z. 11(2:)12:1 R(D[I. LEI],

ht(x) = [s(2) + Is .1(x) I t = st (2) + I s(x) It '
2:t1(2)

LtitR(i)

+ LY.1 t li() (2.36)
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Reducing the first term of equation (2.32) by the relation in (2.36), one

obtains

-2 p(k)ht(k)x(k) m -2 p(k)(m(k) + ly(k)Ilt R(k) y.(k)

+ ly.(k)Ot R(k) x(k)

-13(k) ty.(k) + ty(k) I lt R(k)x(k).

Adding lx(k) I to the first term and subtracting tx(k) I from the second

term on the right hand side of the above equation gives

-2 p(k)ht(k) m(k) m -p(k)(m(k) + Im(k)Ilt R(k) [m(k) + Im(k)lj

-p(k)(y.00 + lipollt mknx(k) - lx(k)1]. (2.37)

It will be shown that the second term on the right hand side of equation

(2.37) is zero. Since

[m(k) + ly(k)nt R(k) [m(k) - y.(k)] m

[371(k) + IY1(k)1, ""' YN(k) + IYN(k)11.

r11(k) 0 ... 0

0 r
22

(k) ... 0

L
0 0 ... r

NN
(k)

N
I r

ii
(k)(y

i
(k) + ly (k)I][Y (k) ly (k)11

iml i
(2.38)
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[5r (k) - ly (k)I] = 0. if y
i
(k) > 0

[yi(k) + lyi(k)11 = 0. if y(k) < 0,

[x(k) + 11.(k)OtR(k)lx(k) - 2.(k)1 m 0 . (2.39)

Substitute (2.39) into (2.37). The first term of equation (2.32) is then

reduced to

-2 p(k)ht(k) ,x(k) m -p(k)lx(k) + lx(k)ntR(k)[x(k) + lz(k)1.(2.40)

Substituting (2.36) and (2.40) into (2.32), one obtains

+ ly(k)OtR(k)[x(k) + 12:001]

- A R(k)[x(k) + ly(k)11+p2(k)[y(k) + lz (k) OtR(k) (I A

" 4X(k) IX(k)nt(p(k)R(k) + p2(k)R(k)(A A# I)R(k)ny(k) +1 Z(k)1

-11,Y(k) LX(k)1112 2 '0
(p

2
(k)R(k)A. R(k)+p(k)R(k)-p (k)R"(k)).

(2.41)

For AV[z(k)] to be negative semidefinite, in particular, Aqx(k)] m 0 only

2

if z(k) = 0 or 2.(k) < 0, the matrix [p
2 (k)R(k) A A

#
9

R(k) + p(k)R(k) - p (k)R`(k))

*111101111..
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tust be positive definite. A A
#

is positive semidefinite since A A is

hermitian idempotent, xtA A# x >0 for any x; it follows that

xtR A A#R x = xtRtA A#R x = (R x)tA All(R x) = ztA A#z > 0 for any z; hence

R A A#R is also positive semidefinite. Now one can choose a p(k) such

that [p(k)R(k) - p
2
(k)R

2(k)] is positive definite. From (2.34),

p(k)R(k)-p
2
(k)R

2
(k) =

p(k)r (k) - p2(k)r
11

2(k)
0 0

11

2
0 p(k)r (k)-p2 (k)r

22
(k)

22

0 0

[p(k)R(k) - p2(k)R2(k)] is positive definite if

0

p(k)r (k)-p
2
(k)r

2
(k)

NN NN

[p(k)r (k) - p
2
(k)r.

2
(k)] > 0 for all i=1,2,...,N. (2.42)

sinh y,

Since r (k) > 0 for all i and p(k) is restricted to be positive,
Yi

the above condition reduces to the condition

1 - p(k) rii(k) > 0 for all i=1,2,...,N. (2.43)

For p(k) chosen in equation (2.26),

p(k)
1

cosh ymax(k)



where

y
max

(k) = Max ly (k)I

1 sinh siral Yi(k)1
p(k)r (k) -

cosh y
max

(k) y (k) y (k)cosh y
max

(k)

Note that

yi
3
(k) y

5
(k)

(yi(k) + +
5!

26

2 4
y (k) (k)_1_ 1+ ...) (1 + 3! + 5! + ..)

y
2

(k) y
4

(k) y
4

(k)
2

Ymax max
y1(k)(1 + max + max + ...)

2! 4! "" "21'
4.

4!

2n
y (k)

(2n41)1
n=o

Ln

Ymax(k)
n=o (2n):

y
i

2(k)

< 1 for all i=1,...N

y2
max

(k)

2n
y (k)

(2n+1)!

2n
y (k)
max

(2n) !

< 1 for all

4=1,2,...,N



it follows that

p(k)r (k)
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m 2n
yi (k)

11=0 (2n+1)!
< 1 . (2.44)

03 2n

ZYmax(k)
n=0 (2n)!

Thus the condition (2.43) is satisfied and [p(k)R(k) - p
2
(k)R

2
(k)] is

1
positive definite for p(k) = Thus AV[y(k)] has the desired

cosh y (k)
max 1

property of negative semidefinite for p(k)
cosh

and for any
ymax(k)

finite x(k).

From equation (2.41) one notes that AV[y(k)1 equals zero if and

only if 2.(k) = 0 or .y.(k) < 0. Since it is assumed that the set of linear

inequalities (2.1) is consistent, and from the lemma 1..(k) jo, therefore

< 0 for all x(k) 0 0

= 0 if y(k) = 0

(2.45)

BY Liapunov's stability criterion, the equilibrium state = 0 of the

11

discrete system (2.30) can be reached asymptotically, i.e., lim112.00 1 1

2
=0,

which corresponds to a solution w
**

with A w
**

= b > 0. This completes

the proof of Part 1(a).

To prove the convergence of the algorithm (2.29) in a finite number

of steps, one notes that b(k) is a nondecreasing vector. Let

bt(0) = [1,1,...1]



then

b
t
(k) > b

t(0) > [1,1,...,1] for any k > 0._
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Since A w(k) = b(k) + y(k), 1/ (k)1 < [1,1,...,1] implies A w
*
(k) > 0

when a solution w
*

is reached. But V[y(k)] < 1 implies y (k)1<[1,...,1].

Since V[y(k)] converges to zero in infinite time, it must converge to

, the region V[y.(k)] = 1 in finite time, hence lyt(k)I <

A w(k) > 0, and a solution w
* = w(k) is obtained in a finite number of

steps. This completes the proof of Part 1(b).

Part 2: It has been proved in Part 1 that V[y(k)]is negative semidefinite

independent of the consistency of the linear inequalities. Now, if the

set of linear inequalities (2.1) is inconsistent, one notes that y(k)

cannot be 0 and hence V[y(k)] cannot become zero for any k > 0. There

must exist a value of k, called k , such that

AV[y(k)] < 0 for 0 < k < k ,

y(k) 0

= 0 for k = k
*

,

for 0 < k < k
*

But V[y(k )1 = 0 if either y(k*) = 0 or y(k*) < 0. Since y(k*) 00,

this implies y(k*) < 0 and hence, from (2.25), h(k*) = 0. Equation (2.30)

indicates that

* *1.(k) = y(k) < 0 for all k > k
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As a consequence, one obtains

0

h(k) = 0

w(k) = w(k*)

b(k) = b(k )

for all k > k

for all k > k

for all k > k

for all k > k

This completes the proof of the theorem.

C. An Optimum Choice of p(k)

1

The choice of p(k) = cosh
(
k
'

in the previous section is
v
-max'

only one of many possible choices of p(k) for the convergence of the

algorithm (2.29). The convergence rate may be further improved by

choosing a p(k) such that the decrease in the Liapunov function qz(k)]

is maximized at every step, that is, -AV[2.(k)] is maximized with

respect to p(k).

Take the partial derivative of Aqx(k)] in equation (2.41)

with respect to p(k),

a{-Aqx(k)]) aay(k) +I x(k)l]t[p(k)R(k) + 11.(k)R(k)(AA1-I)R(k)1Ex(k)+1X(k)11

a{P(k)}
ap(k)

[y(k)+Ix(k)I]t[R(k)-2p(k)R(k)(I-AAR(k)][.y.(k)+I.y_(k) Ii.
(2.46)

For -AVE.y(k)] to be a maximum, must equal zero as a necessary
3p(k)

condition. Hence,



p(k) =

30

2p(k)LK(k) + ly(k)I]t[R(k)(I A AR(k)][x(k) +

= [y(k) + ly(k)WR(k)[y(k) + lx(k)1]

[y(k) + Ix(k) I tR(k) [y.(k) + lx(k)

4E(k) + ly.(k)I] R(k)[I - A AfiR(k)EK(k) + 1.y.(k)1]

provided that

(2.47)

[y(k) + ly(k)I]tR(k)[I - A AfiR(k)[x(k) + ly.(k)I] 0" 0.

(2.48)

During the iteration process, 2.(k) 0 0 and y(k) 0. Since R(k) > 0

and" - AA! 10, the condition (2.48) is satisfied unless I_ - A11 = 0;

therefore, for I - A A11 > 0, both numerator and denominator in (2.47)

are positive definite, hence p(k) given by (2.47) is positive. At this

value of p(k), AV[y(k)] is negative definite in Wk) + lx(k)1] which

is required in the convergence proof of the algorithm (2.29). This can

be shown by substituting (2.47) into (2.41) which, upon simplification,

gives

AV[y(k)] =
1
-P(k)Ez(k) +1x(k)1]

t
R(k)EK(k) +Ix(k)1] < 0

2

(2.49)

)

For this value of -AV[y(k)] to be a maximum,
2

must be

D{p(k))
less than zero for p(k) given by (2.47). Since, in general,
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a
2
{-AV[ipc)]}

- Wk) + ly.(k)Ot(2R(k)(A A° - I)R(k)[y(k) + ly(k)1]

a{p(k)}2 (2.50)

which is negative definite in [x(k) + 1y(k)1]. Thus p(k) of equation

(2.47) does maximize -AV[y.(k)] at each iteration and is the optimum

choice if I - A A° > 0.

If I - A A
# _- 0, equation (2.48) is not satisfied and -AV[x(k)]

becomes a linear function of p(k),

-AV[y(k)] = [y.(k) + I y(k) tp(k)R(k) [x(k) + Iz(k)

which has no finite maxima at finite p(k). Equation (2.47) cannot be

used but any other positive p(k) greater than
1 will

cosh ymax(k)

improve the convergence rate.

D. Summary of the Procedure

The following ten steps summarize the procedure developed to

solve for a solution w of a set of linear inequalities A w > 0.

1. Select a b(0) > 0. Calculate the initial weight vector,

w(0), where w(0) =
A

2. Determine the z vector, where z = A w.

3. Check if the z vector is ?renter than 0, that is all z i
> 0,

for i=1,...,N.
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4. If z is greater than 0, a solution w has just been obtained

and the problem is linear separable; otherwise

5. Calculate the x vector by x = z - b.

6. Check the x vector if x < 0, that is, all yi < 0, for

1=1,...,N, but with at least one negative component.

7. If x < 0, then the set of linear inequalities is incon-

distent or the problem is not linear separable; Otherwise

8. Modify b such that b = b p h, where h is calculated

from equation (2.25) and p from either equation (2.26)

or equation (2.47).

9. Modify w such that w w + p A#h.

10. Return to step 2.

The above steps are shown in the flow chart in Figure 2. Notice

that, just like the Ho-Kashyap algorithm, the process continues until

the consistency or separability of the problem is determined.
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not
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i

p-equation(2.26
or equation(2.47

yes

Problem is
linearly

separable

Figure 2. Flow Chart of the Proposed Algorithm.
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III. APPLICATION OF THE ACCELERATED ALGORITHM

TO SWITCHING FUNCTIONS

A. A Special Algorithm for Switching Functions

For a switching function of r binary variables
'

x x2x r'
one is concerned with the vertices of a r cube, each vertex being assigned

to only one of the two classes C1 or C2. It is required to find a

separating hyperplane, if one exists, between the two classes.

If an n by 1 vector x, (n=r+1), as defined in (1.1), is associated

with each vertex of the hypercube, that is,

xt = (x
0)
x
1)
x
2

2. . . xr)

where xo is the threshold attribute which will always equal +1 and

the components xl,...,xr are the coordinates of a vertex of the r-

dimensional hypercube. Assume that earth xi, (i=1,2,...,r), may take

on values +1 and -1 instead of +1 and O. Let

' n
1

xl c Class C
1

(n1+1).112' (n1+2)1129
in).5_2} c Class C2

where the intersection of class 1 and class 2 is the empty set. Each one

of the 21 vertices of the r cube is allotted to one class or the other.

Then the total number of pattern vectors of the two classes is m=2r.

MIONIVIO-WW/MO
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Finding a separating hyperplane g(x) = 0 between the V40 classes is

equivalent to finding a weight vector w as defined in (1.2) such that

g(x) = x
t
w > 0 for

< 0 for

which is the same as

/ 44-1141> -141
i=2

< w1

for

for j=n
1
+1,...,m

(3.1)

where -w is called the threshold value and w 's (i=2,3,...,n), are

1

called weights for the switching function p(x) = x
t
w. Write all

i
x in

a compact matrix form as defined in (1.5)

A

t

x
t

2-- 1

0111IND

=MIL

(3.2)

werPrINII.W."
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The set of equations (3.1) can be rewritten as

A w > 0 .

Then a weight vector w of the Boolean function g(x) can be obtained by

solving for the above inequalities. If a separating hyperplane or a

switching function does not exist, then the above inequalities will ht.

inconsistent.

The accelerated algorithm developed in the previous chapter will

be used to obtain a suitable weight vector for each of the switchin

functions considered in the next section to show its hi h convergence

rate and effectiveness. Following the Ho-Kashyap d1scuss1on (12),
t e

algorithm can be significantly simplified, however, owing to the special

nature of switching functions. An essential property of the binary

variables x
1 '

x
r
is normality and orthogona11ty

(12
'

21)
, thus

and

2n-1T (1.3)

(

t
'I

r t
2-r(2 ) (.3.6)

Hence, A
#

in the algorithm can be replaced by 2 -r
A
t

for switching

functions. The accelerated algorithm in equation (2.29) becomes

ONORM0 4110.
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<11-.

w(0) = 2
-(n-1)

A tb(0), b(0) I-0 but otherwise arbitrary

y(k) = A w(k) - b(k)

(3.5)
b(k+1) = b(k) + p(k)h(k)

w(k+1) = w(k) + 2-(n-l)p(k)Ath(k)

where h(k) is given by equation (2.25),.and p(k) can be given by either

equation (2.26) or equation (2.47). A digital computer program for the

special algorithm (3.5) has been written in MAD language and is listed

in Appendix A.

B. Example Problems

Seven switching function problems are presented to demonstrate

the effectiveness of the accelerated algorithm. Comparisons are made

between the results obtained by this algorithm and those ob. ained by

Ho-Kashyap algorithm to illustrate the improved convergence rate. The

first two examples are explained in detail while the results of the

other five examples are given and discussed. Example 3 is a Boolean

switching function defined by Winder
(6)

as a testing function for newly

created procedures for switching problems.

1. Example 1: A switching function of three binary variables.

Consider that in a Boolean function of three binary variables

A, B, and C,
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T = A B' + A C' + B'C'

F = B C + A'C + A'B .

Designate the true x's as of class C1 and the false x's as of class

C
2

. Then

Class C1 = {0,4,5,6} = {1?4, 2?4, 3?.11, ivy

Class C2 = {1,2,3,7} = {5x2, 6x2, 7x2, 8x2}

Using (1,-1), instead of (1,0), for the binary representation of xi,

(i=1,... ,r; r=3), one obtains

ix = (1,-1,-1,-1)

x
t

2 1 = (1,1,-1,-1)

3a_c_
t

= (1,1,-1,1)

t
= (1,1,1,-1)

t
= (1,-1,-1,1)

x
t

= (1,-1,1,-1)
6- 2

x
t

2
= (1,-1,1,1)

T-

8Lc = (1,1,1,1)
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Note that x always equal to +1 and, in this case, n=4, m=8. The matrix

A is

.100
M1111, ..1

12-cl
1 -1 -1 -1

1 1 -1 -1
2-1

32s-1
1 1 -1 1

1 1 1 -1
4-1

A = - 52--c2 -1 1 1 -1

- x
6-2

-1 1 -1 1

-7x2
-1 1 -1 -1

-
8--
x
2

-1 -1 -1 -1

AMIN
0.11.11 AIM OM&

Choose

bt(0) = [1,1,1,1,1,1,1]

then

w(0) =
1

A
t

=
1

8
0

441.

-4

[
0

1/[1/221

-1/2

2
n-1



and

A w(0) =
1

Iwo

ICBM

1

3

1

3.

1

3

1

OM,

> 0
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Since A w(0) > 0, the procedure terminates at the zeroth iteration. This

result is the same as obtained from the Ho-Kashyap algorithm. A switching

function g(x) = x w is obtained by taking the threshold element -wl = 0

and the three weight components w2 =
1

w3 =
1

w4 = -
1 Note that
2

this w(0) should also satisfy the relationships fof the Boolean function

T and F and it does as shown below:

A B' 1/2 - (-1/2) = 1 > 0

A C' 1/2 - (-1/2) = 1 > 0

B'C' -(-1/2)-(-1/2) = 1 > 0

B C (-1/2) + (-1/2) = -1 < 0

A'C -+ -(1/2) + (-1/2) = -1 < 0

A'B -(1/2) + (-1/2) = -1 < 0

2. Example A switching function of four binary variables.

In a Boolean function of four variables A, B, C, and D, consider

T =BCD+AC+AD+A B'

F = B C'D' + A'C' + A'D' + A'B'.



This corresponds to Class C
1
and Class C

2
of x,

Class C
1
= {7,9 to 15) = { x x }

Class C
2
= {0 to 6,8} =

9?5-29.6.16-21
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Using (1,-1) for the binary "representation of xi, (i=1,...,r;r=4), one

obtains

x
1
= (1,-1,1,1,1)

x
t = (1,1,-1,-1,1)

2-- 1

t ,

alc_ =

4x
t

= (1,1,-1,1,1)

x
1
= (1,1,1,-1,-1)

= (1,1,1,-1,1)

7

t

1
= (1,1,1,1,-1)

x
t

= (1,1,1,1,1)
8- 1

xt
9-2

(1,-1,-1,-1,-1)

x
t = (1,-1,-1,-1,1)

10- 2



,

2J = (1,-1,1,-1,4-1)
1 3- 2

t
(1,-1,1,-1,1)

142-- 2

x
t

= (1,-1,1,1,-1)
15- 2

16
25.

t

2
= (1,1,-1,-1,-1)

The m by n matrix A, where n=5, m=16, is represented by

1 - 1 1 1 1
MI,

1 1 -1 - 1 1

1 1 - 1 1 - 1

1 1 - 1 1 1

1 1 1 - 1 - 1

1 1 1 - 1 1

1 1 1 1 - 1

A gm_ 1 1 1 1 1

-1 1 1 1 1

- 1 1 1 1 - 1

- 1 1 1 -1 1

- 1 1 1 - 1 - 1

- 1 1 - 1 1 1

- 1 1 - 1 1 - 1

- 1 1 - 1 - 1 1

- 1 - 1 1 1 1

4 2



Choose

then

bt(0) = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]

w(0) = AtB(0) = 1 0

2n-I
16

0

124 .255

41 1.251
41 1.251 .

410.
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Since A w(0) 4..0, one has to determine y(0), 5(0), h(0), and p(0). Since

y(0) jo, one can proceed with the algorithm, to calculate w(1). Let

p(k) in qquation (2.26) be used,

where

1 1 1
p(0) =

cosh ymax(0) cosh 1 1.54305

y (0) = Max ly (0)1 = 1
max

h
t
(0) = s

t
(0) + Is

t
(0)1

= [0,0,0,0,0,0,0,1.04218,1.04218,0,0,0,0,0,0,0]
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The algorithm terminates after the first iteration where A w(1) >0 with

1

+
0

.67546
m

1

16-
0

12.6754616w(1) u 16 1°2

4

[ I

.67546 4.67546

4 .67546 4.67546

4 .67546 4.67546

This is a desired weight vector w to be used in the switching function

g(x) xtw.

3. Example 3: Winder's problem of eight binary variab1es
(6)

Consider a Boolean function of eight binary variables which correspond

to the separation of two classes:

Class 1 (27 to 31, 39,41,to 47, 49 to 63, 71,73 to 79

81 to 127, 131, 133 to 255)

(ix1} ,

Class 2 = (0 to 26, 32 to 38, 40,48,64 to 70, 72, 80,

128 to 130, 133)

Here n=9 and mg5256. For

b
t
(0) in [1,1,1,...1,1,1].



45

and p(k) given in equation (2.26), the algorithm terminates after the 4th

iteration and gives a solution weight vector w for the switching function3
g(x)

MN, ow.

AIM

1.0077

0.6136

0.4694

0.4694

0.3508

0.3508

0.1704

0.1405

0.1405
-.)

4. Exampld 4: A switching function of six binary variables

Consider a Boolean function of six binary variables which

cortsspond to the separation of two classes:

Class C
1
= {30,31,41 to 63) = ( x

1
) (j=1,...,25)j

Class*C
2
= (0 to 29, 32 to 40) = { x 2 ) (j=26,...,64)

Here n=7 and m=64. For

bt(0) = [11,.1,.1,....1,.1,.1]
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and p(k) given in equation (2.47), the algorithm terminates after

the 1st iteration and gives a solution weight vector w
4

for the

switching function g(x) = xtw,

w4

-0.8287

1.9149

1.2763

0.9954

0.3425

0.3425

0.1246

5. Example 5: Another switching problem of six binary variables

Consider a Boolean function of six binary variables which

corresponds to the separation of two classes:

Class C = (46,47,53 to 63} = (jxl), (j=1,2,...,15)
1

Class C
2
= (0 to 45, 48 to 521 f x

j
1, (j=16,....,64)

Here n=7 and m=64. For

b
t
(0) ma [1,1,1...,1,1,11
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and p(k) given in equation (2.26), the algorithm terminates after

the lin iteration and gives a solution weight vector w for the

switching function g(x) = x
t
w,

M NMI

-0.7598

0.5723

0.4219
w5 =

0.3281

0.2344

0.1406

0.0469

401

6. Example 6: Another switching problem of eight binary variables

Consider a Boolean function of eight binary variables which

corresponds to the separation of two classes:

Class C n (127,191,215,217 to 255) = C x ) (J=1,...,42)

1
J-1

Class C
2
= (0 to 126, 128 to 190, 192 to 214, 216)

(*x ) (J=43,...,256)

Here n=9 and m=256. For

bt(0) (.1,.1,.1,...,.1,.1,.1]
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and p(k) given ir equation (2.47), the algorithm terminates after

the 10th iteration and gives a solution weight vector w6 for the

vwitching function g(x) xtw,

w6

0.3732

0.2278

0.2278

0.1654

0.0769

0.0569

0.0247

0.0247

0.0247

MOM

7. Example 7: A nonlinearly separable problem of eight binary variables

Consider the following two classes of vertices of an eight-

dimensional hypercube:

Class C
1

(5 to 11,20,21,27,28,35,35,44,51,60,76,91,92,106,

107,121,122,136,137,151,152,167,182,183,197,198,

212,123,227,228,243 to 252) ( x )
j-1

Class C
2

sm (0 to 4, 12 to 19, 22 to 26, 29 to 34, 37 to 43,

45 to 50, 52 to 59, 61 to 75, 77 to 90, 93 to 105,

108 to 120, 123 to 135, 138 to 150, 153 to 166,

168 to 181, 184 to 196, 199 to 211, 214 to 226,

229 Lo 242, 253 to 255) (jx2)
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Here n=9 and m=256. For

bt(0) =

add p(k) given in equation (2.47), after the zeroth iteration, the

algorithm gives x(0) < 0 which indicates that the given sets of vertices

are not linearly separable.

8. Discussion

The last five example Problems have been solved by the use

of the proposed algorithm with various values of b(0) and with either

p(k) =
1 as given by (2.26) or p(k) given by (2.47). In all

cosh ymax(k)

cases, b(Q) has equal components, i.e, b1(0) = b2(0) = = bm(0) The

numbers of iterations required to solve the example problems in all

experiments are shown in Table 1 and Table 2. These example problems

have also been solved using the Ho-Kashyap algorithm, and the results

are shown in Table 3 and Table 4. Note that in each of these examples

with the Ho-Kashyap algorithm the number of iterations required does not

change for different initial values of the b(0) vector. But the number

of iterations required does change for different initial values of the

b(0) vector with the proposed algorithm, as shown in Table 1. This is

so because b(0) influences p(k). Also note that the number of iterations

1
required for the proposed algorithm with p(k) =

(k)
and

cosh ymax
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Table 1. Number of iterations required to solve the example

problems using the proposed algorithm with

p(k) =
c0sh

1

Ymax(k)

*
Example No. 3 4 5 6 7

b i (0)

2.0 9 112 2 0

1.0 4 42 1

0.5 3 29 1 0

0.2 3 26 1 231 0

0.1 3 25 1 229

0.05 3 25 1 229

0.01 3 25 1 229

0.001 3 25 1 229

10-4 3 25 1 230

10-5 3 25 1 245

10-6 3 29 1 340

10-7 5 32 1

*
Not linearly separable.

Table 2. Number of iterations required to solve the example

problems using the proposed algorithm with p(k) given by

equation (2.47).

Example No.
b
i
(0)

3 4 5 6
*

7

2.0
1.0
0.5
0.2
0.1
0.05
0.01
0.091
10"
10-5
10

-6

10
-7

2

2

1

1

1

1

10

10

0

*
Not linearly separable.
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Table 3. Number of iterations required to solve the example

problems using the Ho-Kashyap algorithm with p=0.5.

*
Example No.3 4 5 6 7

b(0)

2.0 5 52 1

1.0 5 52 1

0.5 5 52 1 0

0.2 5 52 1 0

0.1 5 52 1 462

0.05 5 52 1 462

0.01 5 52 1 462

0.001 5 52 1 462

10-4 5 52 1

10-5 5 52 1

10-6 5 52

10-7 5 52 1

*
Not linearly separable.

Table 4. Number of iterations required to solve the example

problems using the Ho-Kashyap algorithm with p=1.0.

h.

Example No.3 4 5 6 7

b
i
(0)

*

2.0 3 25 1

1.0 3 25 1

0.5 3 25 1

0.2 3 25 1

0.1 3 25 1 229

0.05 3 25 1 229

: .01 3 25 1 229

0.001 3 25 1 229

10-4 3 25 1 229

10-5 3 25 1 229

10
-6

3 25 1 229

10-7 3 25 1

0
0

*
Not linearly separable.

i
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0.5 > b (0) > 0.001 is less than that for the Ho-Kashyap algorithm

with p = 0.5, and is equal to that for the Ho-Kashyap algorithm with

p = 1.0. The value of p = 1.0 for the Ho-Kashyap algorithm minimizes

the number of iterations required for switching functions
(13)

. For

extremely small b
i
(0), b

i
(0) <_ 10-4, as well as larger b (0),

b
i
(0) > 0.1, the proposed algorithm with p(k) .

co h
1

ymax(k)
may take

more iterations, for the proposed algorithm with the optimum p(k)

given by (2.47), the number of iterations required is less than or

equal to that of the Ho-Kashyap algorithm with p = 1.0. In the

problems where the Ho-Kashyap algorithm required a very large number

of iterations, the proposed algorithm reduced this number by a fairly

large factor.

It has been observed in these experiments that the proposed

algorithm reduced the computing time also. For example, for problems

requiring a few iterations for the Ho-Kashyap algorithm the total

computing time was reduced from 90 seconds to 19 seconds and execution

time reduced from 30 seconds to 10 seconds with a dollar saving of $4.00,

from $5.00 to $1.00. For problems requiring a large number of iterations

for the Ho-Kashyap algorithm the proposed algorithm reduced the total

computing time from 80 minutes to 50 seconds and execution time from

30 minutes to 5 seconds with a cost reduction of $22.00, from $23.50

to $1.50.

For a given problem, different initial values of the b(0)

vector lead to different solution weight vectors, w.
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It has also been observed that if two b(0) vectors differed by

a constant factor, the solution weight vectors thus obtained also

differed by the same factor as long as the number of iterations required

remained the same.

Let the number of elements of A w(k) that are less than zero

be designated as an error index for a set of linear inequalities at

th
the k iteration step. This error index is represented by the number

of 1A w that are less than zero, where
i
A is the i

th
row of the matrix

A. Table 5 shows the number of A w >0 observed in the experiments

for examples 3, 4, 5, and 6 using both the Ho-Kashyap algorithm and

the proposed algorithm with b (0) = [0.1,0.1,...,0.1]. The sum of

A w > 0 and A w < 0 equals 2 which for examples 3, 4, 5, and 6

equal 256, 64, 64, and 256 respectively. Note that, after the zeroth

iteration, this error index for the proposed algorithm with p(k) =
1

cosh y(k)

is less than or equal to the error index for the Ho-Kashyap algorithm

with 1)=0.5 and is equal to that for the Ho-Kashyap with p=1.0. The error

index for the proposed algorithm with p(k) given by (2.47) is always

less than or equal to that for the Ho-Kashyap algorithm with p=1.0. This

error information assures the effectiveness of the proposed algorithm.

For the algorithm developed there is no guarantee that all

w
i

> 0, (i=1,...,n), which is necessary for a threshold logic circuit

realizable by transistors. Since there is no prior knowledge about a Boolean

function, one does not know if it is linearly separable by a weight

vector with all positive elements.

-
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Table 5. Comparison of the Error Indices for the Proposed Algorithm
and the Ho-Kashyap Algorithm with bi(0)=0.1 for all i.

Iteration Ho-Kashyap
Example No. p=0.5

No. of

3

o
1

2

3

4

5

4

o
1
2

3

24

25

51

52

5
0
1

6

o
1
2

3

4

5

6

7

8

9

10

11

36
37

43

44

Ho-Kashyap Proposed p(k) Proposed p(k)
p=1.0 given by Eq.(2.26) given by Eq.(2.47)
No. of No. of No. of

( Aw>0) (iAw>0) ( Aw>0)i ( Aw>0)
i

241 241 241 241

250 254 254 242

250 254 254 256

254 256 256

254
256

60
62

62

63

60

63

63

63

60

63

63

63

60

64

63 63 63

63 64 64

63

64

62 62 62 62

64 64 64 64

242 242 242 242

246 250 250 250

250 250 250 250

250 250 250 250

250 250 250 250

250 250 250 254

250 250 250 254

250 250 250 254

250 250 250 254

250 250 250 254

250 250 250 256

250 250 250

250 250 250

250 251 251

250 251 251

250 252 252
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TAble 5. (Continued)

Iteration
Example No.

Ho-Kashyap
p=0.5
No. of

Ho-Kashyap
13=1.0

No. of

Proposed p(k) Proposed p(k)
given by Eq.(2.26) given by Eq.(2.47)
No. of No. of

(jAw>0)J.* ( Aw>0) ( Aw>0) ( Aw>0)
i 1 -- --i

6

74

75
0

90
91

.4.

228
229
.00

461
462

250
251

251
252
01.41

252
252
1..18

252

256

252

252

252
252

1.4110

252

256

252

252

252

252

252

256
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IV. APPLICATION OF THE ACCELERATED ALGORITHM

TO PATTERN RECOGNITION

For dichotomization of patterns other than switching function

problems, no simplification of the algorithm can he made, and the pro-

posed algorithm in equation (2.29) together with p(10 given in

equation (2.26) or equation (2.47) will be used. The generalized

inverse of the matrix A must be calculated once per problem for the

abstraction aspect in pattern recognition. When a solution weight

vector w is obtained from the application of the algorithm, it can be

used in the pattern recognizer as illustrated in Figure 3. A digital

computer program for the algorithm (2.29) has been written in MAD

language. The calculation of A
#
was obtained according to Kalman

and Englar's scheme (22)
. The program was originally written in FORTRAN

and then translated into MAD language to be consistent with the

language used for the proposed algorithm. The complete computer program

is included in Appendix B. The proposed algorithm has been applied to

the two pattern classification problems as described in the next two

sections.
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A. A Character Recognition Problem

In this study patterns consisting of four pairs of hand printed

alphanumeric characters were considered. The data were obtained from the

Learning Research and Development Center at the University of Pittsbt:rgh.

One of the Center's activities is to teach children, ages five to eight,

the alphabet and numbers, via instructional devices and computers.

Hence, the machine recognition of hand printed characters is a current

research interest in the Center. The selected pairs of characters are

similar In form and the patterns collected are representative of

children's hand printing. The four pairs considered here are A and H,

Z and 2, I and 1, and G and 6. Each character was written inside a

square with 12 by 12 divisions. Five attributes or pattern components,

xo,x1,x2,x3, and x4, were obtained from each pair of characters for

classification. The first attribute was the height of the character

and was normalized to be 1.0. The other attributes were certain length

and width, etc., each of which was a fraction of this height. The

attributes given to describe the four pattern pairs are shown in Figure 4

to Figure 7. These represent sets of crude but simple features of hand

printed character pairs. The pattern components of character pairs for

the sample or training sets are listed in Table 6. The original hand

printed characters are reproduced in Appendix C. Note that since the

normalized height is unity for all characters, it can be assigned as

the x
o

component or thl'eshold attribute of the x vector. Hence x is a

5 by 1 vector with n 5.

110.



x3 p

Figure 4. Pattern Components of
the A-H Pair.

IE. X

10110

Figure 6. Pattern Components
of the Z-2 Pair

1 ,1

;
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I "c4
I< x

1

59

x

Figure 5. Pattern Components
of.the I-1 Pair.

x
2

Figure 7. Pattern Components of
the G-6 Pair.
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Table 6. Pattern Components of the Character Pairs Used in the

Training Sets.

A

x
o

x
1

x
2

x3
x4

x
o

x
1 x2

x3
x4

1.0 .8 .0 .5 .5 1.0 .6 .6 .0 .5

1.0 .8 .0 .5 .25 1.0 .6 .5 .08 .5

1.0 .8 .0 .5 .35 1.0 .6 .4 .16 .5

1.0 .8 .0 .5 .75 1.0 .6 .3 .25 .5

1.0 .6 .2 .3 .5

1.0 .6 .6 .0 .3

1.0 .6 .6 .0 .6

2

x
o xl

x
2

x3 x4
x
o

x
1 x2

x3 x4

1.0 .7 .08 .08 1.0 1.0 .6 .2 .08 .7

1.0 .7 .17 .08 1.0 1.0 .6 .1 .08 .7

1.0 .7 .25 .08 1.0 1.0 .6 .3 .08 .7

1.0 .7 .42 .08 1.0 1.0 .6 .08 .08 .7

1.0 1.0 .08 .08 1.0 1.0 .6 .1 .08 ..0 P

1.0 1.1 .08 .08 1.0 1.0 .6 .1 .08 .3

1.0 1133 .08 .08 1.0 1.0 .6 .1 .08 .8

I
1

1

xo
xl

x2 x3
x4

x
o xl x2

x3
x4

1.0 .3 .3 .3 .0 1.0 .05 .0 .0 .05

1.0 .4 .25 .4 .1 1.0 .2 .0 .0 .2

1.0 .4 .3 .25 .15 1.0 .1 .0 .0 .1

1.0 .7 .45 .5 .35 1.0 .5 .0 .0 .5

1.0 .5 .3 .25 .25 1.0 .4 .0 .0 .4

G 6

xo x
1

x
2

x3
x4

xo x
1 x2

x
3 x4

1.0 .8 .5 .8 .0 1.0 .5 .5 .0 .33

1.0 .8 .5 .2 .0 1.0 .5 .3 .0 .25

1.0 .8 .5 .5 .0 1.0 .5 .4 .0 .33

1.0 .8 .5 .62 .0

1.0 .8 .5 .8 .25

1.0 .8 .5 .8 .12

1.0 .8 .5 .8 .2
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It was desired to recognize A against H, Z against 2, I

against 1, G against 6 , or vice versa. For each pair group, designate

patterns of one character as belonging to class C1 and patterns of the

other character class C2. For example, character A belongs to class C1

in the first pair, character Z belongs to class C1 in the second pair,

character I belongs to class Cl in the third pair, and character G

belongs to class Cl in the fourth pair. For each pair group, a dis-

criminant function, g(x) = x
t
w, was to be determined. As shown in

Table 6, there were eleven sample patterns for the A-H pair, fourteen

sample patterns for the Z-2 pair, and ten sample patterns each for

the I-1 and G-6 pairs. The size of matrix A varied from 10 by 5 to

14 by 5. The proposed algorithm was applied to each pair group with

bt(0) = [0.1,0.1,...,0.1] and p(k) given by equation (2.47) to obtain

the following solution weight vectors, w ,

1
and w

-AH- 14:Z2' 119 -G6.

AH

vmo 411M

.0070

.0100

.0001

-.0001

.0001
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w =
-Z2

.0037

.0014

.0010

-.0003

.0031

amp

=0

.0851

.0001

W = .1566

.1743

-.0001
AND =MI6

'w-.4333

.6661

w = .0001
-G6

.0001

-.0001
+me.

where the first subscript refers to class C1 and the second subscript refers

to class C
2
in each pair group. These solution weight-vectors were all

obtained after the zeroth iteration.
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The solution weight vectors were also tested by some new sample

patterns. Only in the Z-2 pair group, there was one misclassification

among a total of twelve new sample patterns. This misclassified one was

a 2 which was written so ambiguously that even a human observer could

hardly distinguish it from Z.

B. A Biomedical Pattern Recognition Problem

The proposed algorithm was also applied to a biomedical pattern

recognition problem: The problem is to investigate whether or not a

change exists in the diurnal cycle of an individual person upon a change

in his environmental condition or physiological state and if such a change

may be used to diagnose physical ailements under strictly controlled con-

ditions by measuirng the amounts of electrolytes present in urine and

blood samples every three hours. The problem and data were presented

by Dr. Venucci of the School of Medicine, University of Pittsburgh. The

data consisted of thirteen sample patterns under two different conditions.

Each pattern has eight components which represent the concentrations of

electrolytes. Thus N = 13 and n = r+1 = 8+1 = 9; the size of the pattern

matrix A is 13 by 9. The pattern matrix A is shown in Table 7. Let

bt(0) = [0.1,0.1, ...,0.1]. For this problem the Ho-Kashyap algorithm

with p = 1 required 927 iterations to determine the separability. However,
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.
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the proposed algorithm with p(k) given by equation (2.47) required only

two iterations, where p(0) = 5.270684 and p(1) = 3.197152. The problem

is linearly separable and a solution weight vector w obtained by the pro-

posed algorithm is

w = w(2) =

-13.6089

2.5915

1.6847

2.2314

0.3414

3.0077

1.8428

1.6559

0.0096
AID

It was observed in this case that the proposed algorithm reduced the

number of iterations required by a factor of approximately 450 over that

required for the Ho-Kashyap algorithm.

Notice that in the examplesabove components of a weight vector

for a given pattern may differ in magnitude by as much as 1700. Although

the magnitude of the attributes differ by as much as 200 it is possible

that some of the attributes are not necessary to describe the pattern.



66

This result is determined by noticing the small effect of the products

of these attributes and their corresponding weights have on the

inequality. For economic reasons one would choose the least number

of attributes to describe a pattern, but for flexability and reliability

it is necessary to have sufficient attributes. This suggests the

development of an experimental procedure to select an adequate set

of attributes.
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V. GENERALIZATION OF THE ACCELERATED ALGORITHM OF LINEAR

INEQUALITIES TO MULTICLASS PATTERN CLASSIFICATION

A. Preliminary Remarks

The problem of multiclass patterns classification is that it

must be determined to which of the R different classes, C1,C2,...,CR,

a given pattern vector, x, belongs. If the R-class patterns are

linearly separable, there exist R weight vectors wj to construct R

discriminant functions gj(x), (jm1,2, ,R), such that

g(x) xw > ANA = gi(x) for all i j, x c c (5.1)

The improved algorithm for dichotomization obtained in Chapter ii

will be generalized to the multiclass pattern classification. A

similar criterion function will be specified and a convergent iterative

algorithm will be devised, incorporating the gradient descent procedure,

to make the proposed multiclass algorithm a direct analog of the pre-

viously described dichotomous algorithm.

The notion of equilateral simplex will be used
(14-17)

. Chaplin

and Levadi(14) have formulated another set of inequalities, other than

(5.1), which can be considered as the representation of linear separation

of R-class patterns. This set of inequalities is
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lIxtu et 11..t, _t il

II
for all i 0 j, x c C

-.1
i 1 A IL .s i

i

for all j=1,2,...,R

(5.2)

where U is an n by(R-1) weight matrix and the vectors ej's are the vertex

vectors of a R-1 dimensional equilateral simplex with its centroid at the

origin. If each ej is associated with one class, x is classified according

to the nearest neighborhood of the mapping U
t
x, alp illustrated in Figure g.

The (R-1) by 1 vectors e 's have the following properties:

and

Ile II m 1 for all j=1,2,...,R
i

Ile e II a Ile
j

- e
k
11 for all i, k 0 i

-j -1

e
t

(e
1

- e
1
) > 0 for all i 0 j .

(5.3)

(5.4)

The components of et et w [e 9...e ,...e ]

,

are determined as

i, j il ji

follows:

21

R R-i 1/2
[ (ii:-1--).111-T)i for jmi

1 R R-i 1/2

i
(R-i)

- [(----)( for j > i
<:. R-1 R-i+1 "

0 for j < i

(j-1929...,R; 1,114929...9R-1),

(5.5)
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Image of the mapping
Utx x c C.- )

l
e. m(- y -Jr-)

Figure 8. Equilateral Simplex Vertices and Nearest Neighborhood
Mhpping of Pattern Vectors , R = 3.
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Inequalities (5.2) are, in fact, equivalent to inequalities (5.1). This

will be shown below. Rewriting inequalities (5.2) one obtains

or

{.0
tx

- e )t (U
t
x - e < {(U x - e )

t
(U

t
x - e. )

{ xtU Utx - xtU e - e
tUtx

+ et e_ _ j _j

- t + t ),< {xtU Ut - xtU e_ _x e_ e _e4

for al. i 0 j, x c C

Since, from (5.3),

et
j

e
j
= 1 = et e

j

equation (5.6), upon simplification, reduces to

-x Lye-
t
i-e ) < - (e e

t
)U

t
x for all i 0 j, x c C

-1

x
t
U(e -e ) > - [x

t
U(e -e )]

t
, for alli0j xc C.

J

Since x
t
U(e -e ) is a scalar,the above inequality implies

Let

(5.6)

(5.7)

x
tU(e -e) >0 for alli0j x cC (5.8)

-1

(5.9)



Then (5.8) becomes

tw.
> xtx w for all i j , XECj

which is (5.1).
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However, in order to generalize the dichotomous algorithm of

Chapter II to a multiclass algorithm, additional information of linear

(15)
inequalities is necessary . Let the N x n pattern matrix A be

defined in the following manner.

A

A1

A.

AR

OEN,

xt
1- 1

1-3!R

n x
R-- R

't

(5.10)

where Aj is an bynn submatrix having as its rows nj transposed pattern

vectors of class C., x
t

, (i=1,2,...,n ), and N = n
1
+ n + ... + n

R
.

2

Designate the n by (R-1) weight matrix U as composed of Ot-1) column

vectors u , (q=1,2,...,R-1).
-1



U = 11
1

i ...I u lu
q R-1

I
1

Also define an N by(R-1) matrix B as

B =

WIN NMI

OM MO IMM,

A

/OW

BR

b
t

1 j

b
t

R

n
tRb R

4
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(5.11)

(5.12)

whose row vectors b
t

, (j=1,2,...,R; t=1,2, or) ) correspond to the
k-

class groupings in the A matrix and satisfy the following inequalities

b
t (e. - e ) > 0 for all i j

(5.13).

for all j=1,2,..R

B is a n. by (R-1) submatrix of B, j=1,2,...,R. Let an N by (R-1) matrix



Y be defined as

A
Y = A U - B,
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(5.14)

The representation of Y may be in the form of either an array of (R-1)

column vectors, ze (q=1,2,...,R-1).

I 1
[

I I I

Y Y-1 I 1;1 I iiR-1.1
I I i I

(5.15)

or an array of N row vectors Y ,
(j=1,2,...,R; i=1,2, ... ,n ), corresponding

to the class groupings in the A matrix

Y

$

at

'Nowa War

IMO

Y
-1

MD. AM. IMMO MO NM

.

.

.

MP

=

OEM
..

(5.16)



where Y is an nj by (R-1) submatrix of Y,

-j

or

Y -=A UB

j=1,2,...,R

2=1,2,...,nj
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(5.17)

(5.18)

The set of linear inequalities which will be discussed in this chapter

is, from (5.8),

> 0 for all i 0 j
(5.19)

for all j=1,2,...,R

Associated with it is another set of linear inequalities

> _9_
(5.20)

for all i 0 j

or

for all j=1,2,...,R

Y (e -e )=(xtU- bt )(e -e ) > 0
1-1 -j r --j

for all i 0 j

all j=1,2,...,R

all t=1,2,. . . ,n
j

(5.21)
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Since, by (5.13), B (e - e ) is constrained to have positive components

for all i 0 j, inequalities (5.20) or (5.21) implies the inequalities

(5.19) and hence (5.1) or (5.2). When inequalities (5.19) are satisfied

for all i 0 j and for all j=1,2,...,R, a solution weight matrix U is

reached which will give linear classification of R-class patterns; that is,

if

x
t
U (e - e ) > 0 for all i 0 j

then x is classified as of class C. Also, if R weight vectors wj,

j=l,2,...,R, are computed from U according to (5.9), then R discriminant

functions, gj(x) = x t
(j=1,2,...,R), can be obtained for use in the

R-class pattern recognizer shown in Figure 9.

B. Development of the Algorithm

For the notational simplicity in the derivation of the gradient

function to be developed below, letthe matrices A, U, B and Y in

equations (5.10), (5.11), (5.12), and (5.15) be represented respectively

as

A =

11

aN1

a
12

a
N2

a
ln

aNn

(5.22)
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c
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e
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V
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i
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c
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n
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t

F
u
n
c
t
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g
i
(
x
)
m
x
t
w
i
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W
e
i
g
h
t

V
e
c
t
o
r

g
 
(
x
)

x
t
w

W
e
i
g
h
t

V
e
c
t
o
r

-
-
R

(
x
)
=
x
t
w R

F
i
g
u
r
e
 
9
.

B
l
o
d
k
 
D
i
a
g
r
a
m
 
o
f
 
a
 
M
u
l
t
i
c
l
a
s
s
 
P
a
t
t
e
r
n
 
R
e
o
r
g
a
n
i
z
e
r
.

M
a
x
i
m
u
m

R
e
s
p
o
n
s
e

S
e
l
e
c
t
o
r



me

and

11

nl n2
un,R-1u u

u12 ul,R-1

11
b
12

b
1,R-1

b b b
N1 N2 N,R-1

YN1 YN2 YN,R-1

Y12 LYR-1

Substituting these into equation (5.14), one obtains

Yu a
ik

u
kj

- b
ij

Let C(Y) be an N by(R-1) matrix defined by

C(Y)

IN

[cc
N1

11

cosh

cosh

c
12

c
1,R-1

c
N2

cN,R-1

1 1

2 Y11
cosh Y12

1
anal,

cosh w v
z -1,R-1

1

YN.1

1
cosh 7 YN2

1
cosh

2 -N,R-1
111111111
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(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

1/0



78

The criterion function J(Y) to be minimized is chosen as the trace of

4 C
t
(Y)C(Y),

where

A
N R-1 2 N R-1

1 2
3(1) = Tr(4C. ) = 4 1 c, = 4 I 1 (cosh yij)

i=1 j=1 i 1=1 j=1

N R-1

E (Y)
i=1 j=1

1 2
J (Y) = 4(cosh -2- yii),

Following the same approach of the dichotomous case, determine the

gradients of J(Y) with respect to both U and B.

1 ay
ijLJ n 4 (cosh Y

2 ij
sinh yij) auau

ay
so 2 sinh yij

(5.28)

(5.29)

(5.30)

where the derivative of a scalar with respect to a matrix is a matrix.

From (5.26) and (5.30),

=NI

0 0 0 a
il

0 0

aJ (Y)
0 0 0 a

i2
0 0

2 sinh (5.31)

0 0 0 a
in

0 0

jth colum;



Then the gradient of the criterion function, J(Y), with respect to

the matrix U is

agY)
aU
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N N N

I aji sinh yil Z ail sinh y
1,R-1

E a sinh y
ijil

.

lig

N N N
1 aj sinh yil . . . E aj, sinh yij . ill ai2 sinh yi01-1

1=1 '` Feel "

Awe

N N N
1 a

in
sinh y

il
. 1 a

in
sinh y ... 1 a

in
sinh y

i,R-1
ilia imel ij 1=1

'WO

-2

a
11

a
12

a
ln

a
21

a
22

a
2n

...

...

ge 2 A
t
S(Y)

a
N1

a
N2

a
Nn

alw
OM

sinh y
11

sinh y2,

sinh y
N1

sinh v
"12

sinh y22

sinh
3TN2

..

..

al
sinh v

sinh v

sinh y
-N,R-1

aw. Am= oft

(5.32)

where S(Y) is an Nby(R-1) matrix With the following representation.
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S(Y) st

[

sinh y11 Binh
Y12

sinh y
-1,R-1

sinh
3TN1

sinh
3TN2

. sinh y
-N,R-1

I I i

so [ms. (Y)1 ... s (Y)1 ..

lq
. Is (Y)

-1
I I

i- - I -R-1
I

MI
S (Y)
--J

S (Y)
--R

dm

MEM.

In

0101.1111

hica CO

OM

and where "S (Y) is a row vector of the following form
i-j -

(5.33)

i-j
(sinh y(Y) gm

(nj-liy'l
...,sinh

t +i),R-1
]

,

(5.34)
S , y.n



From (5.29)

From (5.26)

M (I) 1 1 ay
11

is 4 (cosh y . sinh i y..)
as 13 aB

i 4
aY
__1.1

aB

ay
- 2 sinh yii ii

0

0

-1 .. 0

0 0

0 ..

A 0

Substituting (5.36) into (5.35) gives

A
0

0

II

I

3J (Y) 0

ii - -2
aB 0 I

0 a

A

1

0

81

0
A

0

0 0

sinh yij ... 0 4.. i
0 II 0

0 . . 0

1
i

(5.35)

(5.36)

(5.37)
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Hence, the gradient of the criterion function J(Y), with respect to

the matrix B is

sinh y
11

sinh v
-12

sinh

aJ(Y)
= -2

aB

sinh yN1 sinh
3'N2

siny
3'N R-1

-2 S(Y) (5.38)

aJ(Y)
Since U is not constrained in any manner, 0 implies that

au

- 0, which, in turn, implies that sinh yij = 0 and hence yij = 0

for all i=1,...,N and j=1,2,...,R-1. Therefore, for arc- 0 and a

fixed B,

Y = A U - B = 0

which gives a least square fit of

U = A°B . (5.39)

On the other hand, for a fixed U and the constraint B (e -e ) > 0 for1
all i 0 j as given in (5.13), B may be incremented according to the

following gradient descent procedure to reduce J(Y) at each step,

B(k+1) = B(k) + 8B(k) (5.40)
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where the q-th element, 6( b (k)], of (5[ b t(k)1 in BB (k) is given by
jq

6( b
j

(k)] =

--p(k) [

3J(Y)(k))
] = 2p(k) S. (Y(k)),

jq
B

if Y (k)(e -e ) > 0 for any clOjk-j j

0 if Y (k)(e -e ) < 0 for any q0j .

However, zyj(k)(ej721) > 0 does not imply 2,Si(Y(k))(ei-e.) > 0. In order to

make 6[
t
(k)1(e

j
--e

41

) > 0 so that (5.13) can be satisfied at each step, a

modif ied gradient descent procedure is to be used. Let a (R-1) by (R-1)

non-singular matrix E. be defined as
-j

Also define

E = [e - e e - e. e -e e

-j -1 -I -J-1, -j -j+1"6.9 -j
1. (5.41)

Z = Y E. for all j=1,2,...,R. (5.42)

The increment Unb (k).] is then given in terms of
4 jci

a b (k)Ej ] =_

4.2 p(k) S. (Z(k)) = p(k)[ S. (Z(k)) + A (k)]
k j

if Z (k) = Y (k)(e -e )
jc, _j _q

0 if Z (k) = Y (k)(e -e ) <
X Lj

(5.43)



where
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A (k) = S (Z(k)) Sgn ( Z (k)) (5.44)
Z jq Z jq t-jq

and, following (5.33),

-S
jq

(Z(k)) = Sinh Z
j

(k).
t

Putting into vector representation,

or

where

di b (k)E = p(k) [ S (Z(k)) + A (k)]

b (k)] = p(k) [ S (Z(k)) + A (k)JE
t-j

= p(k) H (Y(k))
t-i

-1
H (Y(k)) S (Z(k)) + A (k)]E .

-1
H (Y(k)) * [S (Z(k)) + A (k)JE

-1 -I

-1

(5.45)

(5.46)

(5.47)

11

1
(Y(k) _(Y(k))

1
11.

:

i

H(Y(k)) = H (Ii(k)) an H (Y(k))
-i t-J

. .

. .

. .
LiRcyjk)) AR(Y(k))

= [h1(Y(k)) ... N(Y(k)) ... ha_1(Y(k))]. (5.48)



It follows from (5.46) and (5.44) that

Then
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6[ b (k)](e
3
-e
-1

) > 0 for all i and for all j.

o[B(k)1 = p(k) H(Y(k))

Substituting the above equation into (5.40), one has

B(k+1) = B(k) + p(k) H(Y(k)) (5.49)

Using the above equation in (5.39), one has

U(k+1) = A1B(k+1) = A11 {B(k) + p(k) H[Y(k)/}_

= U(k) + p(k) A
.#
H[Y(k)] (5.50)

Therefore, an iterative algorithm to solve for U can be proposed in the

following:

[

U(0) = A11B(0)

Y(k) = A U(k) - B(k), Z (k) = Y (k) E_ -3 -I
B(k+1) = B(k) + p(k) H[Y(k)],

U(k+1) = U(k) + p(k) Alf H[Y(k)] (5.51)

where p(k) may be chosen as equal to

provided that

{ c4(k) + H (Y(k))(E t)-1R( Z (k))E t H (Y(k))}

j=1 V-i -3 -j

p ( k) = R-1
2 7 h

t
(I - A A

#
) h

(5.52)

R j

{ c (k) + (Y(k))(E t)R( Z (k))E t H (Y(k))} > 0

j=1 t =1 1 R771 R7"-i

(5.53)

where ic(k) and R( Z (k)) are defined in (5.62) and (5.60) respectively as

will be shown later. The initial B matrix, B(0), may be chosen from
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r
et

WM
e
t

B(0) = 8
> 0 (5.54)

R

R
Iwo

where !is are vertex vectors of (a-1)-dimensional simplex and 0 is an

arbitrary positive constant. A recursive relation in Y(k) is also

obtained as follows:

Y(k+1) Y(k) + p(k)(A A° - I)H[Y(k)] (5.55)

Compare (5.51) and (2.29), it is evident that the above algorithm for

multiclass pattern classifl.cation is a generalization of the dichotomy

algorithm developed in Chapter II.

C. Theorem 2

In order to prove the convergence of the algorithm (5.51), the

following discussion is necessary.
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Lemma 2. Consider the set of inequalities (5.19) and the algorithm

(5.51) to solve it. Then

1) ij(k)(21-21) A:0 for all ij

for all j=1,2,...,R

for any k

2) If (5.19) is consistent, then

Y (k)(e -e ) jo for all ij

for all j=1,2,...,R

for any k

Proof.

1) Let

Since

Then

Y (k)(e -e ) > 0 for all ifij

for all j=1,2,...,R

for some k

> 0 for all ifij

(e -e )tY t(k)B (k)(e -e ) > 0 for all iij
-1

Y (k) B (k) > 0
-1

for all j=1,2,...,R
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it follows that

But

since

---

Y(k)B(k) > 0

Y(k) = (A A# - I) B(k),

Yt(k)B(k) = Bt(k) (A A# - 1) B(k) < 0

(A

This is a contradition. Hence

... I) < 0 ._

Y (k) (e - e ) J._ 0 for all i0j
-1 -i -1

for all j=1,2,...,R

for any k.

2) Assume that (5.19) is consistent but

X(k) (tj-v <0 for all illij

for all j=1,2,...,R

for some k

* *

consistence of (5.19) implies the existence of a U and a B such that

A U* = B*



and

*
A U (e -e ) = B

*
(e -e ) > 0 for all

-i- -J
for all j=1,2,...,R

Therefore

*

(e -e )
t
Y
t

(k) B (e -e ) < 0 for all i0j
--i --i -1

Y
t (k) B

* < 0
i .1

and

But for any Y(k),

thus

or
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for all j=1,2,...,R

t R
It (k) B

*
= I Yt (k) B*, < 0.

jail .1 J

A
t
Y(k) = A

t (A U(k) - B(k)) = A
t
(A A

#
- I) B(k)

= (A
tA

A# - At) B(k) = 0 B(k) = 0 .

U
*t A

t Y(k) = 0.

* t * R t
*

Y
t
(k) A U = Y (k) B = I Y (k) B = 0

juil i j

which is a contradition. Hence, if (5.19) is consistent,

Y
-.J

(k) (e -e )
--i

AL 0
1.

for all 1.0j

for all j=1,2,...,R
for any k.

.0.........1111..
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Theorem 2. Consider the set of linear inequalities (5.19) and the

algorithm (5.51) to solve them, and let

n.
t

R-1 R j
A

V[Y(k)] = 1111(k)11 = Trri (k)Y(k)] = Z 1141(k)11
2

= Z I 11 Y (k)11
crl j=1 1=1

and

1) If the set of linear inequalities is consistent, then

a) AV[Y(k)] V[Y(k+1)] - V[Y(k)] < 0 and

lim V[Y(k)] = 0 implying convergence to a solution
k-0.00

in an infinite number of iterations; and

b) Actually, a solution is obtained in a finite number of

steps.

2) If the set of linear inequalities is inconsistent, then there

*
exists a positive integer k such that

AV[Y(k)]< 0

AV[Y(k)] = 0

*

for k < k

*
for k > k

*
Y
i
(k)(e -e )10 for k < k

2,-- --.1 -1 for all 1.0j

for all j=1,2,...,R

*)

-i= Y (k (e -e
1
) < 0i-i

*
U(k) = U(k*) for k > k

*
B(k) = B(k )

*
for k > k

*
for all k > k
for all 103-
for all j=1,2,...1R
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In other words, the occurrence of a matrix Y(k) with all non-positive

elements of Y(k).(e -e ) for all i0j and all j at any step terminates
71

the algorithm and indicates the nonlinear separability of the R-class patterns.

Proof.

The proof of this theorem is similar to the convergence proof

of the generalization of Ho-Kashyap algorithm to multiclass pattern

classification
(23)

.

Part 1:

With reference to the recursive relation in Y(k) given by

(5.55), V[Y(k)] can be considered as a Liapunov function,

Now,

Since

V[Y(k)] Tr[Yt(k)Y(k)] > 0 for all Y(k)0 . (5.56)

All[Y(k)] aa's V[Y(k+1)] - V[Y(k)]

= Tr[Yt(k+1)Y(k+1) - Yt(k)Y(k)].

Y (k+1)Y(k+1) Y
t
(k) Y(k)

m [Yt(k) 4-p(k)Ht(Y(k))(A A#-I)][Y(k)+p(k)(A

p(k) Ht[Y(k)](A All-I)Y(k) + p(k)Yt(k) (A AiLI)H[Y(k)]

+p2(k) Ht[Y(k)] (I - A A°)H[Y(k)],

(5.57)



and

then
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A A#Y(k) = A A#[A U(k) - B(k)] = A A#[A A#B(k) B(k)J

0 A A#B(k) - A A
#
B(k) = 0._

V[Y(k)] Tr{-2p(k)Ht[Y(k)JY(k)+p2c
rtk [Y(k)](I-A. 0)H[Y(k)])

= -2p(k) Tr {Ht[Y(k)]Y(k))+, p2(k)Tr(Ht[Y(k)](I-A 40)H[Y(k)]]

R-1

= -2p(k)Tr{}I[Y(k)Yt(k)} + p2(k) ht [Y(k)](I-A Ail)h [Y(k)]

gag q

R
n

R-1

= -2p(k) E Ali,(Y(k) Y (k)+p
2
(k) I h

t
(Y(k))(I-AA

#
)h Y

jog L=1
t-j q=1 -1 -1

From (5.45) and (5.33),

Sinh Z
1

S (Z) = [

Z
j1

j

ZLj

1

z a( z )t-I(

g

Sinh
L
Z
J.R-1

zj,R-1

Sinh
,R-11

Z

L
Z
j,R-1

(5.58)

(5.59)



where

A
Ryl) = diag [ril(Z1), rR_LR-1(ty]

(j=1,2,...,R; k=1,2,...,nj)

A
Sinh kZjci

r ( Z ) > 1, (q=1,...,R-1).
cm t-j Z

jq

Substituting (5.59) into (5.47),

then

-1
H (Y(k)) = [ Z (k)R( Z

j
(k) + A (k)1E

t- t-

-2p / ,H Y
j=1 k=1

- -1 t
' -2P 2'jLI [RhYR,31) RAJ]

1
(Eti ) aij

-1 -1
-2p I E [ R( )+0_ jE (E t) 1R ( Z )[2,Z.E.G.V

t

56-1- L-1 j -1 -1
L-1
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(5.60)

- 1 -= -p [ Z R( Z ) +
1

A jE (E t) R 1( Zi)Ult.(J.1) + zyt
jL

- 1 -1
- p I [ Z R( Z ) + A jE (E t) 1R ( Z (2.,K.) - gltj]

t

j

- (Y(k))(E t)-
1 R-1( t t(y(k))p H

P / I Ed. R(21 ) 4- A I E tE ) -1R -1
14-1 (RY-1(RrY Aj

j

(5.61)

-Since the off diagonal elements in (E
t
E )

-1
are negative

(23)
and R 1

( tZj )

is a diagonal matrix with all positive diagonal elements, the off diagonal

elements of (E
t
E )

-1
R
-1

(
k
Z
j
) are also negative. From (5.44), (5.47), and

(5.49), the elements of ( Z R( Z ) + A I are either positive or zero, and



the corresponding elements of [ Z R( Z ) + A ] are eithev zero or negative.
t-i-

Hence,

A
c = [ Z R( Z ) + A ] (E tE )

-1
R
-1

( Z ) [ Z R( Z ) - A jt>0

for all j and all (5.62)

Substituting (5.62) into (5.61) which in turn, is substituted into (5.50,

one obtains

AV[Y(k)] = -p(k) H
t

(Y(k))(E )
1
R

1
( Z )E

t
H (Y(k))

j

-p(k) 2 c(k) p
2
(k) 7 h t(Y(k))(I - A A//)h (Y(k))

j -1

mil .1)(k) 7 7 c(k) + tyi(k))(fjt)-11-lyyfi
t tWk))

j

+ p
2
(k) 7 h

t
(Y(k))(I - A A0)h (Y(k))

R j R-1

m -13(k) c4(k) p4(k) h t(Y(k))A (Y(k))

j=1 Z=1 k (1=1

R j

- p(k) E E Hj(Y(k)) f(E t)
-1

[R
-1 ( Z )-p(k)IIE t) H t(Y(k))I

j=1 2,=1L-11
(5.63)

V(Y(k)) is negative definite if the right hand side of the above equation

is negative definite in [ Z R( Z ) + A J. The first two terms on the right

hand side are negative semi-definite. If a value of p(k) can be found such

that
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2 H (Y(k)) {(E t)
-1 [R-1( Z)

j=1 =1 -j

p(k)I]E.
t

} H.(Y(k)) > 0

Z 2'

-1

then AV(Y(k)) is negative definite in [ Z R( Z ) + A ]. Note that when
Z-i- t-J

p(k) = cosh
1

Y
Y
max (k) = Max I

Z jq
(k)1,

max
(k) '

j,Z,q

[R-1( Z
j

) - p(k)I] is positive definite and has real eigenvalues as can be
Z-

shown by following (2.43) and (2.44); but it is not certain that

t -1 -1
(E. ) (

j
) - p(k)I] E.

t can be positive definite for all j and all
-1 -1

Z. Let p(k) be so chosen as to maximize -AV[Y(k)] at each step, one

follows the procedure used in Section II-C to obtain a choice of p(k) as

given in (5.52), provided (5.53) is satisfied to make sure that p(k) > 0.

For this value of p(k),

AV(Y(k))

R j

[ / { c,(k) + H,(Y(k))(E
t
)
-1

R( Z(k))E H (y.(k))}]
2

z_j _j _
j=l=l 2' 3

R-1
4 h t(I - A Ail) h

q=1 -1

< 0 for [ Z R( Z ) + A ] 0 0 .

t7i- t-i
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Hence, V[Y(k)j is negative definite in [ Z R( Z ) + A 1. Note that

Z R( Z.) + A. = 0 for all j and all 11 only if Z < 0, that is only

f Y(k) = 0 or Y.(k)(j e -e.) < 0 for all i0j and for all j. Since it

is assumed that the set of the inequalities (5.19) is consistent, from

the lemma Y (k)(e.-e ) 1.0 for all i0j and for all j, therefore
-o

AV[Y(k)] < 0 for all Y(k) 0 0

= 0 if Y(k) = 0 (5.64)

and the solution Y = 0 of equation (5.55) can be reached asymptotically,

that is

lim IlY(k)11
2
= 0

k+0,0

** ** **
which corresponds to a solution U with A U = B such that A U (e -e )

-1

= B (e.-e ) > 0 for all i0j and for all j. This completes the proof of

Part 1(a).

Note that if the B(0) given in (5.54) is

bt (0)(e -e ) = et (e -e ) > 0 for all i0j
for all j (5.65)

Then the algorithm (5.51) gives
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b
t
(k+1) = b (k) + p(k)[ S (Z(k)) +r- ri

(j=1,2,...,R, L=1,2,...,n ) (5.66)

b
t
.(k+1)(e -e ) > b

t .(0)(e -e ).
ft J J ii

From (5.65), 0.60 and (5.67), by induction

b
t
.(k+1)(e -e.) > (l+c)e

t
(e -e ), c > 0.

J ji j

for all 1.0j

for all j
for all k

which satisfies the condition given in (5.13). Since

nj

V[Y(k)j = IlY(k)11 = 1 Illy (k)II
2

< 1
j=1 i=1

at a certain finite k, it implies that

H Y (k) 112 < 1ij

and

(5.67)

(5.68)
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> - e
t

(e -e ) if k is sufficiently large. (5.69)
-j -I

for all ij
for all j

Let v be an n by 1 vector whose components all equal unity,

v
t

[1,1,1,...,1]

From (5.68) and (5.69),

Bi(k)(ei-ei) > (l+c).ej(efel)./ for all iJ

Y (k)(e -e ) - e
t

(e -e )v for all_J _1 _ _1 _

Since

it follows that

A U(k) = B
-(k)

+ Y (k)
1 -J

84(k)(= e -e ) +_1 _j _1

> (14t)e (e -e )11 -e ).!

t
> c e (ej _ _1 _

j

(5.70)

> 0 for all ij
for all j=1,2,...,R (5.73)



!

99

*
which indicates a solution U = U(k) is obtained in a finite number of

steps. This completes the proof of Part 1(b).

Part 2:

If the set of inequalities (5.19) is inconsistent, Y(k) cannot

be 0 and hence V[Y(k)] cannot become zero for any k > 0. There must

*
exist a value of k, k=k , such that

*
AV[Y(k)] < 0 for 0 < k < k

*
= 0 for k = k

* *
But as shown in Part 1, AV[Y(k )] = 0 only if either Y(k ) = 0 or

i-
Y
j
(k

*
)(e

j
-ie ) < 0 for all i0j and for all j. Since Y(k

*
) 0 0, this

implies that

YiJ (k*)(.Je -1e ) < 0 for all i0j
for all j

hence, from (5.48), (5.44), and (5.51), (5.55) and (5.57), one has

and

H[Y(k)] = 0

B(k) = B(k
*
)

U(k) = U(k*)

*
Y(k) = Y(k )

for all k > k

for all k > k

for all k > k

for all k > k

*

*

*

*



AV[Y(k)] = 0 for all k > k
*
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This completes the proof of Part 2.

Therefore, the algorithm (5.51), together with p(k) given by

equation (5.52) under the condition (5.53) and with B(0) given by

equation (5.54), is a convergent algorithm for the solution U of the

set of linear inequalities (5.19). The nonlinear separability of the

multiclass patterns can also be detected by observing at a certain

step k*

*
Y (k ) (e - e ) < 0 for all ilij
--i -i -I for all j=1,2,..,R.

- ..*.m.... _
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VI. SUMMARY AND CONCLUSION

In this dissertation, a new iterative algorithm has been

developed to solve for a solution w, if one exists, to a set of

linear inequalities) A w > 0 which arises in pattern dichotomization

and switching problems. It is an improvement of the Ho-Kashyap

algorithm based upon the attempt to minimize a different criterion

1
function J(2) = 4E (cos Iyi)

2 where 2: =Aw-bandbis a
1=1

vector with all positive components. This criterion function has

a larger gradient than the one used by Ho and Kashyap. The algorithm

is expressed in equation (2.29) with the incremental coefficient

p(k) given by either equation (2.47) or equation (2.26). The

algorithm also simultaneously tests for the nonexistence of a

solution of the linear inequalities whenever z < O.

This algorithm has a higher rate of convergence than previous

methods for a certain range of the choice of b(0). A comparison

has been made between this improved algorithm with p(k) given by

equation (2.47) and the Ho-Kashyap algorithm with the conver-

gence rate may be greatly increased for .001 < bi(0) < 0.5 (i=1,2,..,N),

as verified by the computer results of switching theory and pattern

classification problems in Chapters III and IV. For problems where

a large number of iterations, for example, greater than twenty, were
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required for the Ho-Kashyap algorithm, the proposed algorithm reduced this

number of iterations by a factor of 20 to 450. For problems where a small

number of iterations were required by the Ho-Kashyap algorithm, for example,

less than twenty, the proposed algorithm reduced the number of iterations

by as much as 30 percent.

The generalization of the proposed algorithm for a solution matrix

U of a set of linear inequalities A U(e -e ) > 0, (for all ii and

jail, 2 , ,R) , which is applicable to multclass pattern classification has

been presented and a convergence proof has been given. This generalized

algorithm is expressed in equation (5.51) with p(k) given by equation (5.52).

The convergence proof utilizes the concept of mapping the pattern classes

into vertices of an equilateral simplex whose vertex vectors are el,

The following six problems are suggested for further inves-

tigations: (1) to study in detail the relationship between the rate

of convergence of the algorithm and the choice of p(k) and b(0); (2) to

incorporate the proposed algorithm into the group-pattern adaptive

procedure for pattern classification; (3) to apply the proposed

algorithm for the development of an algorithm for piecewise linear

separation in cases where the sample patterns are not linearly separable;

and (4) to develop explicit algorithms to solve for nonlinear dis-

criminant functions for some nonlinearity separable pattern recognition

problems; (5) to extend the algorithm so that it can assure all wi > 0,
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(1-1,2,... ,n), for threshold logic circuits realizable by transistors;

and (6) to develop a procedure to select an adequate set of pattern

attributes providing for reliability and flexability in a teaching

machine.



APPENDIX A

PROGRAM LISTING FOR THE SPECIAL

ALGORITHM OF EQUATION (3.5)

104

..N.=4.a.
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A MAD Prpgram listing is shown an ,the following pages

for the application of the accelerated algorithm to switching functions.

The program is devised so that the iterations for various initial

values of the b vector, b(0), can be performed successively. This is

done y inputing NVAL equal to the number of initial b vectors and

VALU (1)...VALU(NVAL) equal to the initial values of the b vector.

The matrix A is read in by FORMAB. FORMAB inputs

ID identification number

N = number of columns of A

M = number of rows of A

NA = number of elements of class 1

MB = number of elements of class 2

and the elements of class 1 and class 2 with the minterm expressed in

decimal form, elements of class 1 are entered first. The value of

p(k) in equation (2.47) is used for the program listing.
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A program listing in MAD language is shown on the following

pages for the calculation of the generalized inverse of a matrix. The

program is written for M m number of rows greater than N number of

columns. The matrix A is read in by rows, all first.
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APPENDIX C

SAMPLE PATTERNS OF ALPHANUMERIC CHARACTERS

WRITTEN BY CHILDREN

MIIMINMIIWIN

116





The letter H

11.0111 OfINO...1110



.`"*.

119

The letter H





121

,

The letter Z



122

The number 2



123

The number 2





I

The letter I

125





The number 1



128

1 1111.01e

ANYM/LENA

The letter G

ANINIMMe .1.1111, .014.
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The letter G



I The number 6
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